一、查询SQL尽量不要使用select *,而是具体字段
1、反例
SELECT?*?FROM?user
2、正例
SELECT?id,username,tel?FROM?user
3、理由
节省资源、减少网络开销。
可能用到覆盖索引,减少回表,
一、查询SQL尽量不要使用select *,而是具体字段 1、反例
2、正例
3、理由 节省资源、减少网络开销。 可能用到覆盖索引,减少回表,提高查询效率。 注意:为节省时间,下面的样例字段都用*代替了。 二、避免在where子句中使用 or 来连接条件 1、反例
2、正例 (1)使用union all
(2)分开两条sql写
3、理由 使用or可能会使索引失效,从而全表扫描; 对于or没有索引的salary这种情况,假设它走了id的索引,但是走到salary查询条件时,它还得全表扫描; 也就是说整个过程需要三步:全表扫描+索引扫描+合并。如果它一开始就走全表扫描,直接一遍扫描就搞定; 虽然mysql是有优化器的,出于效率与成本考虑,遇到or条件,索引还是可能失效的; 三、尽量使用数值替代字符串类型 1、正例 主键(id):primary key优先使用数值类型int,tinyint 性别(sex):0代表女,1代表男;数据库没有布尔类型,mysql推荐使用tinyint 2、理由 因为引擎在处理查询和连接时会逐个比较字符串中每一个字符; 而对于数字型而言只需要比较一次就够了; 字符会降低查询和连接的性能,并会增加存储开销; 四、使用varchar代替char 1、反例
2、正例
3、理由 varchar变长字段按数据内容实际长度存储,存储空间小,可以节省存储空间; char按声明大小存储,不足补空格; 其次对于查询来说,在一个相对较小的字段内搜索,效率更高; 五、技术延伸,char与varchar2的区别? 1、char的长度是固定的,而varchar2的长度是可以变化的。 比如,存储字符串“101”,对于char(10),表示你存储的字符将占10个字节(包括7个空字符),在数据库中它是以空格占位的,而同样的varchar2(10)则只占用3个字节的长度,10只是最大值,当你存储的字符小于10时,按实际长度存储。 2、char的效率比varchar2的效率稍高。 3、何时用char,何时用varchar2? char和varchar2是一对矛盾的统一体,两者是互补的关系,varchar2比char节省空间,在效率上比char会稍微差一点,既想获取效率,就必须牺牲一点空间,这就是我们在数据库设计上常说的“以空间换效率”。 varchar2虽然比char节省空间,但是假如一个varchar2列经常被修改,而且每次被修改的数据的长度不同,这会引起“行迁移”现象,而这造成多余的I/O,是数据库设计中要尽力避免的,这种情况下用char代替varchar2会更好一些。char中还会自动补齐空格,因为你insert到一个char字段自动补充了空格的,但是select后空格没有删除,因此char类型查询的时候一定要记得使用trim,这是写本文章的原因。 如果开发人员细化使用rpad()技巧将绑定变量转换为某种能与char字段相比较的类型(当然,与截断trim数据库列相比,填充绑定变量的做法更好一些,因为对列应用函数trim很容易导致无法使用该列上现有的索引),可能必须考虑到经过一段时间后列长度的变化。如果字段的大小有变化,应用就会受到影响,因为它必须修改字段宽度。 正是因为以上原因,定宽的存储空间可能导致表和相关索引比平常大出许多,还伴随着绑定变量问题,所以无论什么场合都要避免使用char类型。 六、where中使用默认值代替null 1、反例
2、正例
3、理由 并不是说使用了is null或者is not null就会不走索引了,这个跟mysql版本以及查询成本都有关; 如果mysql优化器发现,走索引比不走索引成本还要高,就会放弃索引,这些条件!=,,is null,is not null经常被认为让索引失效; 其实是因为一般情况下,查询的成本高,优化器自动放弃索引的; 如果把null值,换成默认值,很多时候让走索引成为可能,同时,表达意思也相对清晰一点; 七、避免在where子句中使用!=或操作符 1、反例
2、理由 使用!=和很可能会让索引失效 应尽量避免在where子句中使用!=或操作符,否则引擎将放弃使用索引而进行全表扫描 实现业务优先,实在没办法,就只能使用,并不是不能使用 八、inner join 、left join、right join,优先使用inner join 三种连接如果结果相同,优先使用inner join,如果使用left join左边表尽量小。 为什么? 九、提高group by语句的效率 1、反例 先分组,再过滤
2、正例 先过滤,后分组
3、理由 可以在执行到该语句前,把不需要的记录过滤掉 十、清空表时优先使用truncate truncate table在功能上与不带where子句的delete语句相同:二者均删除表中的全部行。但truncate table比delete速度快,且使用的系统和事务日志资源少。 delete语句每次删除一行,并在事务日志中为所删除的每行记录一项。truncate table通过释放存储表数据所用的数据页来删除数据,并且只在事务日志中记录页的释放。 truncate table删除表中的所有行,但表结构及其列、约束、索引等保持不变。新行标识所用的计数值重置为该列的种子。如果想保留标识计数值,请改用 DELETE。如果要删除表定义及其数据,请使用drop table语句。 对于由foreign key约束引用的表,不能使用truncate table,而应使用不带 where子句的 DELETE 语句。由于truncate table不记录在日志中,所以它不能激活触发器。 truncate table不能用于参与了索引视图的表。 十一、操作delete或者update语句,加个limit或者循环分批次删除 1、降低写错SQL的代价 清空表数据可不是小事情,一个手抖全没了,删库跑路?如果加limit,删错也只是丢失部分数据,可以通过binlog日志快速恢复的。 2、SQL效率很可能更高 SQL中加了limit 1,如果第一条就命中目标return, 没有limit的话,还会继续执行扫描表。 3、避免长事务 delete执行时,如果age加了索引,MySQL会将所有相关的行加写锁和间隙锁,所有执行相关行会被锁住,如果删除数量大,会直接影响相关业务无法使用。 4、数据量大的话,容易把CPU打满 如果你删除数据量很大时,不加 limit限制一下记录数,容易把cpu打满,导致越删越慢。 5、锁表 一次性删除太多数据,可能造成锁表,会有lock wait timeout exceed的错误,所以建议分批操作。 十二、UNION操作符 UNION在进行表链接后会筛选掉重复的记录mysql索引表,所以在表链接后会对所产生的结果集进行排序运算,删除重复的记录再返回结果。实际大部分应用中是不会产生重复的记录,最常见的是过程表与历史表UNION。如:
这个SQL在运行时先取出两个表的结果,再用排序空间进行排序删除重复的记录,最后返回结果集,如果表数据量大的话可能会导致用磁盘进行排序。推荐方案:采用UNION ALL操作符替代UNION,因为UNION ALL操作只是简单的将两个结果合并后就返回。 十三、批量插入性能提升 1、多条提交
2、批量提交
3、理由 默认新增SQL有事务控制,导致每条都需要事务开启和事务提交,而批量处理是一次事务开启和提交,效率提升明显,达到一定量级,效果显著,平时看不出来。 十四、表连接不宜太多,索引不宜太多,一般5个以内 1、表连接不宜太多,一般5个以内 关联的表个数越多,编译的时间和开销也就越大 每次关联内存中都生成一个临时表 应该把连接表拆开成较小的几个执行,可读性更高 如果一定需要连接很多表才能得到数据,那么意味着这是个糟糕的设计了 阿里规范中,建议多表联查三张表以下 2、索引不宜太多,一般5个以内 索引并不是越多越好,虽其提高了查询的效率,但却会降低插入和更新的效率; 索引可以理解为一个就是一张表,其可以存储数据,其数据就要占空间; 索引表的数据是排序的,排序也是要花时间的; insert或update时有可能会重建索引,如果数据量巨大,重建将进行记录的重新排序,所以建索引需要慎重考虑,视具体情况来定; 一个表的索引数最好不要超过5个,若太多需要考虑一些索引是否有存在的必要; 十五、避免在索引列上使用内置函数 1、反例
2、正例
3、理由 使用索引列上内置函数,索引失效。 十六、组合索引 排序时应按照组合索引中各列的顺序进行排序,即使索引中只有一个列是要排序的,否则排序性能会比较差。
实际上只是查询出符合deptid= 1 and position = 'java开发'条件的记录并按createtime降序排序,但写成order by createtime desc性能较差。 十七、复合索引最左特性 1、创建复合索引
2、满足复合索引的最左特性,哪怕只是部分,复合索引生效
3、没有出现左边的字段,则不满足最左特性,索引失效
4、复合索引全使用,按左侧顺序出现 name,salary,索引生效
5、虽然违背了最左特性,但MySQL执行SQL时会进行优化,底层进行颠倒优化
6、理由 复合索引也称为联合索引,当我们创建一个联合索引的时候,如(k1,k2,k3),相当于创建了(k1)、(k1,k2)和(k1,k2,k3)三个索引,这就是最左匹配原则。 联合索引不满足最左原则,索引一般会失效。 十八、优化like语句 模糊查询,程序员最喜欢的就是使用like,但是like很可能让你的索引失效。 1、反例
2、正例
3、理由 十九、使用explain分析你SQL执行计划 1、type system:表仅有一行,基本用不到; const:表最多一行数据配合,主键查询时触发较多; eq_ref:对于每个来自于前面的表的行组合,从该表中读取一行。这可能是最好的联接类型,除了const类型; ref:对于每个来自于前面的表的行组合,所有有匹配索引值的行将从这张表中读取; range:只检索给定范围的行,使用一个索引来选择行。当使用=、、>、>=、 eq_ref > ref > range > index > all。 实际sql优化中,最后达到ref或range级别。 2、Extra常用关键字 二十、一些其它优化方式 1、设计表的时候,所有表和字段都添加相应的注释。 2、SQL书写格式,关键字大小保持一致,使用缩进。 3、修改或删除重要数据前,要先备份。 4、很多时候用 exists 代替 in 是一个好的选择 5、where后面的字段,留意其数据类型的隐式转换。 未使用索引
(1) 因为不加单引号时,是字符串跟数字的比较,它们类型不匹配; (2)MySQL会做隐式的类型转换,把它们转换为数值类型再做比较; 6、尽量把所有列定义为NOT NULL NOT NULL列更节省空间,NULL列需要一个额外字节作为判断是否为NULL的标志位。NULL列需要注意空指针问题,NULL列在计算和比较的时候,需要注意空指针问题。 7、伪删除设计 8、数据库和表的字符集尽量统一使用UTF8 (1)可以避免乱码问题; (2)可以避免,不同字符集比较转换,导致的索引失效问题; 9、select count(*) from table; 这样不带任何条件的count会引起全表扫描,并且没有任何业务意义,是一定要杜绝的。 10、避免在where中对字段进行表达式操作 (1)SQL解析时,如果字段相关的是表达式就进行全表扫描 ; (2)字段干净无表达式,索引生效; 11、关于临时表 (1)避免频繁创建和删除临时表,以减少系统表资源的消耗; (2)在新建临时表时,如果一次性插入数据量很大,那么可以使用 select into 代替 create table,避免造成大量 log; (3)如果数据量不大,为了缓和系统表的资源,应先create table,然后insert; (4)如果使用到了临时表,在存储过程的最后务必将所有的临时表显式删除。先 truncate table ,然后 drop table ,这样可以避免系统表的较长时间锁定; 12、索引不适合建在有大量重复数据的字段上,比如性别,排序字段应创建索引 13、去重distinct过滤字段要少 带distinct的语句占用cpu时间高于不带distinct的语句 当查询很多字段时,如果使用distinct,数据库引擎就会对数据进行比较,过滤掉重复数据 然而这个比较、过滤的过程会占用系统资源,如cpu时间 14、尽量避免大事务操作,提高系统并发能力 15、所有表必须使用Innodb存储引擎 Innodb「支持事务,支持行级锁,更好的恢复性」,高并发下性能更好,所以呢,没有特殊要求(即Innodb无法满足的功能如:列存储,存储空间数据等)的情况下,所有表必须使用Innodb存储引擎。 16、尽量避免使用游标 因为游标的效率较差,如果游标操作的数据超过1万行,那么就应该考虑改写。 NO.1 往期推荐 Historical articles 系统性总结了 Numpy 的所有关键知识点,建议收藏!! 【超实用】3 分钟,教你用 Docker 部署一个 Python 应用! 总结了25个Pandas Groupby 经典案例!! 这几个Matplotlib绘图技巧,真的是太实用了 (编辑:威海站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |