加入收藏 | 设为首页 | 会员中心 | 我要投稿 威海站长网 (https://www.0631zz.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 运营中心 > 建站资源 > 优化 > 正文

代码详解:用Pytorch训练快速神经网络的9个技巧

发布时间:2019-08-19 10:17:21 所属栏目:优化 来源:读芯术
导读:事实上,你的模型可能还停留在石器时代的水平。估计你还在用32位精度或*GASP(一般活动仿真语言)*训练,甚至可能只在单GPU上训练。如果市面上有99个加速指南,但你可能只看过1个?(没错,就是这样)。但这份终极指南,会一步步教你清除模型中所有的(GP模型)。

然而,在Lightning中,这是一个自带功能。只需设定节点数标志,其余的交给Lightning处理就好。

  1. # train on 1024 gpus across 128 nodes 
  2. trainer = Trainer(nb_gpu_nodes=128, gpus=[0, 1, 2, 3, 4, 5, 6, 7]) 

Lightning还附带了一个SlurmCluster管理器,可助你简单地提交SLURM任务的正确细节(示例:

https://github.com/williamFalcon/pytorch-lightning/blob/master/examples/new_project_templates/multi_node_cluster_template.py?source=post_page---------------------------#L103-L134)

10. 福利!更快的多GPU单节点训练

事实证明,分布式数据并行处理要比数据并行快得多,因为其唯一的通信是梯度同步。因此,最好用分布式数据并行处理替换数据并行,即使只是在做单机训练。

(编辑:威海站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

热点阅读