预测性维护是边缘计算与人工智能,在工业落地的最短路径?
2017年底,卡特彼勒宣布终止对Uptake的投资,不再持有Uptake的股份,并重新调整与Uptake的合作领域。卡特彼勒意识到,如果对Uptake持续投资,将削弱自己的竞争力,希望把预测性维护的能力收回到自己“体内”,进一步推进从设备制造到制造即服务MaaS的转型。
2. 两条切入路径 工业场景的要素:人、机、料、法、环,预测性维护主要与“机”挂钩。就像汽车的价值链包括车主、4S店、车厂、汽车零部件的各级供应商,“机”的价值链包括:
【路径1】 创新型物联网企业的普遍做法是围绕最终用户挖掘价值。 最终用户是工业的主体,上游各类企业都是围绕最终用户开展业务,因此用户也是各种服务的核心落脚点。 物联网企业的做法是在围绕设备加装传感器和工业网关,并不介入控制器原厂的数据和通讯协议,将传感器数据在边缘侧和云端进行分析和反馈,“感知设备的脉动”。 传感器采集的过程值(流量、温度、压力等),传输至边缘云进行分析,可以显示多样化的评估图表,结合预先定义的报警机制,确保对过程值进行持续监控和分析。 传感器安装在哪里?采集什么信号?机器特性是什么?分析什么原理?前期需要进行详细的分析,才能保证采集到的数据是价值的。每一个传感器的部署和定制分析都要花费时间和金钱,先从最重要的故障点入手才有意义,这是一个漫长的讨论、尝试和验证的过程。 很多项目并不是典型的预测性维护,做到简单的数据呈现和报表分析,实现状态检测和远程监控,已经可以满足最终用户的需求。 【路径2】 传统工业自动化巨头因为拥有私有协议优势和存量设备优势,选择从源头上入手,从控制层直接接入新型硬件,由浅入深,提供预测性维护服务。 举两个例子。 比如,西门子在2018年底推出了针对边缘应用的全新硬件,并以此构成工业边缘计算(Industrial Edge)概念的一部分。这款紧凑型边缘设备以嵌入式工控机SIMATIC IPC227E为基础,可从生产端实现对生产数据的直接读取和处理。 这种做法相当于给传统控制器PLC外挂了一台工业电脑,直接读取和分析控制层数据,并与工业互联网平台MindSphere配合使用,提供预测性维护等能力,以边云协同的方式提升现场管理水平。而且当工业应用程序底层的框架条件发生变化时,边缘设备上的应用可以实现同步调整,保持设备功能性的实时更新。 就在这个周末,3月29日,西门子还与德国大众汽车集团签署协议,德国大众宣布采用西门子MindSphere工业互联网平台,范围涵盖大众的122个工厂以及1500个供应商。这一合作激起的涟漪势必促进跨国企业对于工业云平台的采用,为预测性维护的落地起到一定程度的推动作用。 除了从控制层面直接介入的做法,电机与驱动器厂家也不甘落后。2019年3月初,三菱电机宣布推出新一代通用型伺服驱动系统J5,它不仅成为全球首款使用下一代工业网络技术TSN的伺服产品,还将集成智能控制技术Maisart。 Maisart是Mitsubishi Electric's AI creates the State-of-the- ART in Technology,“三菱电机的人工智能技术创造最先进技术”的缩写。Maisart与伺服驱动系统J5的集成,将以内嵌的方式,直接实现对机械传动部件(滚珠丝杠、皮带、齿轮...)与驱动器的检测诊断和预测性维护。 创新型物联网企业,乃至传统工业自动化巨头,都已开始围绕预测性维护,或者更准确的说,围绕由预测性维护引发的巨大市场空间,开展军备竞赛。 无论是预测性维护、质量控制、远程监控,或者资产追踪,其背后使用的物联网技术是一样的。因此预测性维护是一个具备横向整合能力的应用。 基于预测性维护过程中采集的设备数据,包含工艺、质量、性能、效率等指标,可以从设备层面延展到生产线层面。 预测性维护采集的数据点越多、数据的价值越大、机理模型的理解越透彻、经验积累越丰富,横向整合的能力越强,进而帮助企业以崭新的方式和手段,解决降本、提效的问题。 3. PdM的新载体 市面上已有的预测性维护方案,大部分是在云计算或者雾计算层面的,而随着边缘算力的提升,以及工业人工智能的发展,在边缘侧完成预测性维护变得经济上更加可行。 (编辑:威海站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |