让加速计算更加精彩 NVIDIA GTC China 2019的别样精彩
此外,NVIDIA推出了“预训练模型”,合作伙伴可以使用Drive预训练模型,并使用迁移学习工具来适配个性化的配置。NVIDIA还不断地通过TensorRT优化预训练数据。在这中间,NVIDIA使用了Drive联邦学习,无需移动数据即可进行训练模型。 黄仁勋说,现在AI面临的一个问题是数据隐私,而联邦学习可以用于自动驾驶和医疗影像等领域。NVIDIA提供了很多预训练模型。你可以通过NGC下载这个模型,然后根据自己的数据进行适配。 针对自动驾驶,NVIDIA发布了下一代机器人处理器AGX Orin。Orin系统级芯片集成了NVIDIA新一代GPU架构和Arm Hercules CPU内核以及全新深度学习和计算机视觉加速器,每秒可运行200万亿次计算,几乎是NVIDIA上一代Xavier系统级芯片性能的7倍。 从以上种种发布和宣布,我们看到NVIDIA正在将GPU带到各个领域,并且通过软硬结合的方式进行优化,从而推动各行各业的转型升级。 结语谈及NVIDIA,大家习惯于将其与AI联系起来。但是在黄仁勋看来,人工智能市场本身的体量是非常大,在注解人工智能芯片的时候,我们不应该说人工智能加速,而是人工智能计算。 GPU架构是通用可编程的,可以承载各种应用,这意味其成本可负担性来说是非常好的。同时,NVIDIA也与产业界保持紧密合作,比如Mellanox、思科等加速创新速度。“加速计算为我们带来了新的市场,它需要新的能力,NVIDIA不断创新架构,同时布局软件,为市场提供新的解决方案。”黄仁勋最后说。 (编辑:威海站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |