几种大数阶乘算法效率比较(Java)
发布时间:2020-12-31 10:48:35 所属栏目:大数据 来源:网络整理
导读:完整代码: package bigdatamul; import java.math.BigInteger; /** * 大数阶乘 * * @Description : TODO(大数阶乘) * * @author yzy * @date 2016-12-20 上午9:31:14 * */ public class Test { public static void main (String[] args) { //单位:ms //fun
完整代码: package bigdatamul; import java.math.BigInteger; /** * 大数阶乘 * * @Description: TODO(大数阶乘) * * @author yzy * @date 2016-12-20 上午9:31:14 * */ public class Test { public static void main(String[] args) { //单位:ms //fun1(5000);//100!:2 1000!:15 5000!:78 10000!:234 50000!:5879 fun2(5000);//100!:16 1000!:114 5000!:519 10000!:911 50000!:4340 //fun3(50000);//100!:0 1000!:15 5000!:62 10000!:312 50000!:8955 } public static void fun1(Integer n) { Long begin = System.currentTimeMillis(); Integer base = n; BigInteger result = new BigInteger("1"); for(int i = 1; i <= base; i++){ String temp1 = Integer.toString(i); BigInteger temp2 = new BigInteger(temp1); result = result.multiply(temp2); } System.out.println("" + base + "! = " + result); Long end = System.currentTimeMillis(); System.out.println("运行时间:"+(end - begin)); } public static void fun2(int n) { Long begin = System.currentTimeMillis(); int[] cal = new int[10010]; int num = n; cal[0] = 1; for(int index = 1; index <= num; ++index ) { for(int i = 0; i < 10000; i++) { cal[i] = cal[i]*index; } for(int i = 0; i < 10000; i++) { cal[i+4] = cal[i+4]+ cal[i]/10000; cal[i+3] = cal[i+3]+ cal[i]%10000/1000; cal[i+2] = cal[i+2]+ cal[i]%1000/100; cal[i+1] = cal[i+1]+ cal[i]%100/10; cal[i+0] = cal[i]%10; } } for(int i3 = 0; i3 < 10004; i3++) { cal[i3+4] = cal[i3+4]+ cal[i3]/10000; cal[i3+3] = cal[i3+3]+ cal[i3]%10000/1000; cal[i3+2] = cal[i3+2]+ cal[i3]%1000/100; cal[i3+1] = cal[i3+1]+ cal[i3]%100/10; cal[i3+0] = cal[i3]%10; } int x = 10000; while(cal[x] == 0) x--; for(int i2 = x; i2 >= 0; i2--) { System.out.print(cal[i2]); } System.out.println(); Long end = System.currentTimeMillis(); System.out.println("运行时间:"+(end - begin)); } public static void fun3(int n) { Long begin = System.currentTimeMillis(); int RAD=10000; int buffSize=(int)(n * Math.log10((n+1)/2) / Math.log10(RAD)+1); short[] buff = new short[buffSize]; int len=1; buff[0]=1; for (int i=1;i<=n;i++){ int c=0; for (int j=0;j<len;j++) { int prod=(buff[j]*i+c); buff[j]=(short)(prod % RAD); c=prod / RAD; } while (c>0) { buff[len++]= (short)(c % RAD); c=c/RAD; } } Long end = System.currentTimeMillis(); System.out.println("运行时间:"+(end - begin)); } } 总结:由运行结果可以看出,在计算10000以下的阶乘时,算法一和算法三效率相当,算法二较慢;而数字很大时,算法二效率反而快些,算法一、三效率反而不行。 (编辑:威海站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |