加入收藏 | 设为首页 | 会员中心 | 我要投稿 威海站长网 (https://www.0631zz.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 大数据 > 正文

互联网高科技公司领导AI工业化,MatrixGo加快人工智能落地

发布时间:2022-03-04 01:53:28 所属栏目:大数据 来源:互联网
导读:AI(人工智能)工业化与AI工程化正在引领人工智能的大趋势。AI工程化主要从企业CIO角度,着眼于在企业生产环境中规模化落地AI应用的工程化举措;而AI工业化则从AI供应商的角度,着眼于以规模化方式为企业用户提供AI技术、方案和服务,从而在企业生产环境中能
  AI(人工智能)工业化与AI工程化正在引领人工智能的大趋势。AI工程化主要从企业CIO角度,着眼于在企业生产环境中规模化落地AI应用的工程化举措;而AI工业化则从AI供应商的角度,着眼于以规模化方式为企业用户提供AI技术、方案和服务,从而在企业生产环境中能够规模化落地AI应用。AI工业化和AI工程化相当于一个硬币的两面,一面是AI技术供给和供应链的规模化,一面是AI技术使用和落地的规模化。
 
  AI工程化已经连续两年入选Gartner的2021年及2022年重要战略科技趋势报告。在2021年,Gartner指出只有53%的项目能够从AI原型转化到生产环境,AI项目的扩展难度很大。而在2022年报告中,Gartner预测到2025年,10%建立了AI工程化最佳实践的企业,将比余下90%的企业实现至少高三倍的收益。AI工程化不足之处,AI工业化补足。作为AI模型生命周期高质量数据服务供应商,澳鹏中国高级产研总监张童皓指出:数据优化为AI推理带来的效果提升,要远比代码优化的效果强很多,企业到了建立AI数据供应链的时机。
 
  AI工业化与AI工程化都包括了DataOps、ModelOps和DevOps三大实践,统称为AIOps。其中ModelOps和DevOps已经有众多成熟的自动化工具与平台以及相应的从业人员,而DataOps正处于快速上升期,AI数据标注是DataOps中的一个关键领域。2022年1月,澳鹏中国推出了MatrixGo高精度AI数据标注平台企业版,专门面向企业本地部署环境,帮助CIO们以高度自动化、标准化和规模化方式建立AI标注数据供应链。
  
  近年来,人工智能领域在第三次浪潮爆发后经历了快速的发展,许多特定领域的专用人工智能算法已经大幅度超越了人类的水平,并在工业生产和社会生活中得到了广泛应用。目前,深度学习算法的本质是海量数据驱动的统计学习,是随着计算机算力和大数据可及性的快速提升而出现的产物。特别是近两年出现超大规模预处理自然语言模式,例如北京智源人工智能研究院的人工智能大模型“悟道2.0”参数规模就达到1.75万亿[1]。
 
  既然深度学习算法是算力与大数据的产物,那么深度学习算法模型的工业化优化,也就需要AI数据供应链的工业化。所谓“工业化”,即以自动化、标准化和规模化可扩展方式为标志。澳鹏Appen是一家有着超过25年历史的人工智能训练数据服务公司,澳鹏Appen近期发布的《2021年人工智能与机器学习现状调查报告》显示,随着深度学习算法越来越成熟,模型算法本身的迭代优化已经不能带来明显的效果,而AI数据的高质量优化是模型效果提升的下一个关键。AI数据即需要经过人工标注后的数据,才能用于AI模型的训练和推理及优化。此前,AI标注数据的供应基本以作坊式为主,难以保证AI标注数据的高质量供给,接下来AI标注数据的供给将迎来工业化爆发。
  
  随着互联网高科技企业等越来越大规模地将AI嵌入到自己的商业运营、产品与服务等方方面面,大规模的AI项目对标注数据的快速和持续供给需求已经越来越迫切。以互联网高科技企业为代表的AI用户已经率先与外部的数据服务供应商合作,以解决持续的AI标注数据外包、数据准备、数据质量评估以及数据供给等挑战。但在AI标注数据的规模化供给方面,自动化、标准化和规模化可扩展仍然是需要解决的关键问题。

(编辑:威海站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    热点阅读