基于动态知识图谱的大规模数据集成解决方案
因此,为了不“污染”本体库,在实现中将事件数据存放到单独的OLAP存储中,用户可以进行预分析,然后将其中具有价值的部分导入到本体库中。 受益于这种分离存储的架构,无需对客户数据提前进行大量转换、融合处理,单纯的写入OLAP存储是十分高效的,对1KB数据能轻松达到10W+ TPS。在实际的场景中,客户当天提供的数TB数据,第二天就能完成建模、接入到应用端可见。 总结与展望 在本文中,我们介绍了如何通过知识图谱对多源异构的数据进行数据集成,以及百分点使用知识图谱进行数据集成的几种方案和如何通过元数据与存储分离查询的方案赋予知识图谱“动态”的特性。 从实际项目的落地情况来看,这些特性和方案无疑能很好地助力客户落地各种场景下的数据集成、分析需求。从另一个角度讲,当前方案还是有很多进步空间的,比如目前应用层的开发还需要对底层知识库的存储方式有很深的认识,并且应用与底层存储耦合严重,若底层架构需要升级往往会影响到所有的下游应用。 未来,可将底层知识库进行逻辑抽象,封装出统一查询层API,应用层可以像使用图数据库一样使用知识库,简化与解耦应用层开发,也可助力快速开发行业应用。另外,外部的“事件”库如何更好的与本体库进行协同、统一管理,也是目前百分点进一步探索的方向。 (编辑:威海站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |