加入收藏 | 设为首页 | 会员中心 | 我要投稿 威海站长网 (https://www.0631zz.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 站长资讯 > 动态 > 正文

打造机器人触觉感官,腾讯Robotics X实验室做到更好

发布时间:2022-12-03 08:02:23 所属栏目:动态 来源:互联网
导读:   机器人已经成为现代生产生活中的重要组成部分,如工业机器人、家用机器人等。机器人成为了人类功能的延伸,而在对智能机器人的长期追求中,人们设想赋予机器人类人的五感,即视觉、触觉
  机器人已经成为现代生产生活中的重要组成部分,如工业机器人、家用机器人等。机器人成为了人类功能的延伸,而在对智能机器人的长期追求中,人们设想赋予机器人类人的五感,即视觉、触觉、听觉、嗅觉和味觉,尤以视觉和触觉最为重要。过去几十年,计算机视觉和图像传感器等技术在机器人领域取得了巨大进步,但触觉能力相对落后。
  
  触觉在日常生活中发挥着视觉无法取代的作用。人类既可通过触摸感知到的触觉评估物体的大小、形状等属性,又能通过接收到的压力、振动等感觉信息感知周围环境并规避潜在危险。同样,机器人触觉是其理解现实世界物体交互行为的重要武器。通过触觉感知,机器人能够获取物体的重量、刚度、变形等触觉信息,从而顺利实现对物体的精准定位以及执行各种操作(比如抓握)任务。
 
  此外,触觉是人类进化史中最早发育与最原始的感知能力, 也是人类五种感知中唯一一种具有主动、双向交互的感知与交互能力。得益于触觉的双向交互性,触觉包括了感知(sensing)与渲染(actuation/display)。感知是通过触觉传感器获取交互环境中的触觉信息,并以某种方式编码与存储;渲染则是根据数字化的触觉信息将其直接在人体上输出并直接感受。在实现上,感知通过触觉传感器进行,渲染通过触觉执行器进行。因此,触觉传感器和执行器成为业界研究人员深耕的两大领域。
 
  在国内,有一家实验室致力于推进人机协作的下一代机器人研究,打造虚拟世界到真实世界的载体与连接器。它就是 2018 年成立的腾讯 Robotics X 实验室。目前实验室的研究方向包括作为机器人基础技术的视觉、触觉等感知能力,以及灵敏运动、灵巧操控、智能体三大支柱技术。
 
  针对触觉的两大领域,腾讯 Robotics X 实验室进行了大量的探索和开发,其中在柔性触觉传感器领域瞄准了压阻型、电容型、摩擦电型、光纤型四种机理,在柔性触觉执行器领域专注于电流型和电磁型反馈机理,并取得了一系列研究成果。
 
  近期,该实验室联合其他科研团队在 Nature Communications、Science Advances 和 ACS Nano 期刊上发表了一系列代表性论文。本文则从传感器和执行器的原理、设计、制备和控制等多个方面揭示了其中的技术独到之处。
 
  触觉传感器
 
  触觉传感器用来测量传感器与环境的物理交互所产生的信息,通过模仿生物皮肤的触觉感知功能,检测接触事件发生时的机械、温度、疼痛等多模态的刺激。人体皮肤对硬度、粗糙度、温度、振动等具有细腻的触觉感知,通过综合分析物体的各项触觉信息,使手部肌肉施加合理的力,进行自适应的抓握。
 
  在电子皮肤的辅助下,智能机器人系统或假肢也可以利用触觉信息进行运动轨迹规划、物体操纵、安全操作,并从环境中获取各种信息。但对于自由度越来越高的刚体机器人,传统扭矩传感器昂贵且难以部署,所以开发柔性、高灵敏度、高空间分辨率、多模态的电子皮肤是实现高效感知和控制的重要一步。
 
  目前业界已经出现基于电阻式、压阻式、电容式、压电式、摩擦电纳米发电机(TENG 式)、光纤式、基于视觉等工作原理的机器人触觉感知方法。
 
  压阻式传感器:高灵敏、高分辨率、响应速度快
 
  目前,压阻式传感器因其构造简单成为机器人触觉传感器的重要发展趋势,但因灵敏度较低、检测压力范围较窄、响应速度较慢等缺点,目前仍处于实验室研究阶段。另外,制作材料也是压阻式传感器面临的一大难题。
 
  虽然导电纳米材料(如碳纳米管、纳米纤维、银纳米粒子、金纳米线)与聚合物弹性体(如聚氨酯、PDMS)合成的压阻薄膜是首选材料之一,但在实践中,导电纳米材料很难均匀地分散在制膜前驱液中,导致压阻薄膜灵敏度较低。
 
  业界已有通过将表面处理成各种微结构进而增加压阻薄膜与电极之间接触面积的方式来增强灵敏度,比如美国斯坦福大学鲍哲南课题组曾利用空心球微结构制作锯齿状压阻式触觉传感器阵列(2014)。然而,基于模具的微结构限制了单个传感器的尺寸并阻碍其向大型传感器阵列的集成。
 
  因此,腾讯 Robotics X 实验室一方面致力于提升压阻薄膜的灵敏度、压力检测范围、响应速度、线性度等各项指标,为应用于机器人的触觉传感器提供优越的电子材料;另一方面研制高分辨率的晶体管基阵列,提升触觉传感器的图形分辨率。
 
  实验室在与清华大学集成电路学院合作的 “Large-Scale Integrated Flexible Tactile Sensor Array for Sensitive Smart Robotic Touch” 论文中,将上述压阻式传感器的各项指标达到了领先水平。该论文已在 ACS Nano 期刊上发表。
  
  研究者展示了一个 64 × 64 柔性触觉传感器阵列,通过集成高性能压阻膜(PRF)和大面积碳纳米管薄膜晶体管的活性矩阵,实现了 0.9 mm(相当于每英寸 28.2 像素)的高空间分辨率。所研制自组装微结构的压阻薄膜表现出了高达 385 kPa^-1 的高压力灵敏度、3 ms 的快速响应时间、良好的线性度、大于 1400 kPa 的检测范围以及超过 3000 次的良好循环耐久性。集成前两者研制的触觉传感器阵列可以清晰识别仿真蜜蜂的足底图像信号。研究者在硬件上也实现了触觉传感器阵列与基于忆阻器的存算一体芯片相结合的智能触觉系统,记录和识别手写体数字和汉字书法,分类准确率分别达到了 98.8% 和 97.3%。
  
  TENG 式传感器:体积小、传输距离远、自供能
 
  为了实现第四次工业革命,物联网技术在诸多领域不断提升其惊人的能力。在整个物联网系统中,传感器是基础单元,收集各方有用的信息并传递给人或其他装置。有线传感和无线传感是两种主要的实现方式。有线传感系统直接将传感器连接到接收输入的设备上,会给应用场景带来诸多限制,很多应用场景难以实现有线信号传输,比如体域网等。因此,针对无线传感系统的解决方案研究迫在眉睫。无线传感系统安装方便、灵活性足,维护起来也方便,应用场景也越来越多。
 
  然而,传统的无线传感技术往往需要传感、信号调制、无线传输以及供能与能量管理四个模块,这导致无线传感系统存在体积大、刚性、高能耗和高成本等问题。这无疑限制了无线传感系统的应用场景,并在系统维护和可持续发展方面带来了新的挑战。新兴的摩擦纳米发电机(TENG)技术成为了无线传感的替代方案,它既可通过额外的位移电流项触发无线信号的产生与传输,还能同时高效地捕获机械能和运动信号,不需要额外的电源和传感模块,使设备实现完全自供能。
 
  腾讯 Robotics X 实验室联合香港中文大学分别在 Science Advances 和 Nano Energy 期刊上发表了两篇论文,在基于 TENG 的柔性触觉传感器方面取得了一系列研究成果。
 
  在第一篇论文中,研究者研发了一种基于 TENG 技术的自供能无线传感贴纸(self-powered wireless sensing e-sticker, SWISE),它可以将输入的机械信号转化为电磁波信号以实现无线传感,完全不需要电池或导线。SWISE 器件具有一体化、完全自供能、柔性、可形变、小型化(低至 9 mm × 9 mm, 指甲盖大小)、超薄(低至 95 μm)、超轻(低至 16 mg)以及远距离传输(> 30 m)等多种优点。
  
  具体地,这项工作提出通过击穿放电引起的位移电流使得电磁波生成和自供能无线传感的范式转变策略,并实现了一体式完全自供能无线传感和传输单元即 SWISE。与最先进的无线传感设备相比,SWISE 具有最小的器件尺寸和最远的有效传输距离(>30 m),并兼具完全自供能及纯柔性的特点。
 
  在此基础上,研究者制作了自供能无线柔性键盘和智能腕带,用于检测和传输来自多个按键的信号。就应用而言,SWISE 可以在可穿戴和植入式设备、机器人、生物医学、人机界面、基础设施等领域实现潜在应用监控。
 
  第二篇论文则是在 SWISE 工作原理的基础上进行的拓展,提出了一种面向商业传感器的通用自供能无线传感解决方案(general self-powered wireless sensing solution)。与 SWISE 一样,该方案利用击穿放电效应将机械信号转化为电磁波信号,同时产生的电磁波信号利用多种商业传感器进行调制,从而实现面向商业传感器的自供能无线传感平台。
  
  具体地,在 SWISE 自供能无线传感策略的基础上,研究者进一步探究了其模型并提出了一种通用的自供电无线传感解决方案。通过调整电阻、电感和电容等系统参数,调制频率和阻尼比,分别用无线信号中的振荡基频 / 周期和衰减时间来表征。基于这些方法,SWISE 可以耦合相应的商业传感器,以实时、自供能和无线的方式通过电磁波传输多种物理信号的感知信号。在此基础上,研究者用不同的调制方法演示了自供能无线温度和压力传感系统,以验证该方法的有效性,并预期可以应用于多物理信号感知领域。
 
  此外,腾讯 Robotics X 实验室还联合清华大学深圳国际研究生院在 Nano Energy 发表了一篇论文,提出了一种基于 TENG 的新型电子皮肤触觉传感器,仅利用单一机制即可实现多模态传感。此外在实际应用中通过引入小波变换提出了信号解耦方法,并在此基础上提出了一个无线且完成集成的系统「MTSensing」,用于实时和同步的材料和纹理识别。
  
  电容式传感器:耐磨损、稳定性、双模态
 
  电容传感器具有灵敏度高、响应快、检测限低等优点,已广泛应用在智能穿戴、机器人传感和人机交互等领域。传统的电容传感器大多采用多功能层简单堆叠的异质结构,不同层在材料和弹性模量上差异较大,存在显著的力学失配。因此,具有异质结构、非粘结界面的器件也存在界面不稳定的问题,在高剪切力条件下容易出现界面分层,造成传感信号失真或失效。
 
  目前已经出现在传感器中引入微结构的方法,这样可以增强介电层的可压缩性以提高灵敏度,并通过快速恢复和释放能量来提高器件的响应速度。在介电层中添加导电填料可以产生更高的介电常数,从而改善信号幅度。
 
  此外,电容传感器与软体机器人之间的界面也存在力学失配和界面粘附力不足的问题,导致机器人在复杂的机械条件下进行抓取动作时容易产生信号失真等问题。因此,解决柔性电容传感器的界面稳定性问题并同时实现高性能传感极具应用价值。
 
  对此,腾讯 Robotics X 实验室联合南方科技大学在 Nature Communications 上发表了一篇论文,舍弃了常规的电容传感器异质结构,设计了同质、拓扑交联的增韧微结构界面,既获得了高灵敏度和高界面稳定性的有机结合,又实现了电容传感器与机器人的无缝融合。

(编辑:威海站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!