别闹了,AIGC杀不死艺术家
发布时间:2022-11-25 23:30:48 所属栏目:外闻 来源:互联网
导读: AIGC生成内容能取代插画师、设计师的工作吗?或者更疯狂一点,AI 能批量生产艺术作品,乃至从根本上颠覆艺术市场吗?
关于AIGC的爆红我们已经和科技界探讨的足够多,今天我们
关于AIGC的爆红我们已经和科技界探讨的足够多,今天我们
AIGC生成内容能取代插画师、设计师的工作吗?或者更疯狂一点,AI 能批量生产艺术作品,乃至从根本上颠覆艺术市场吗? 关于AIGC的爆红我们已经和科技界探讨的足够多,今天我们把目光转向从业者——AI能否取代他们的工作? 下面是他们的回答。 画家自己下笔之前都不知道会发生什么,AI如何能知道?又如何计算出来? AI不能绘制的东西 当我询问能否清楚地辨认AI和人类绘画作品的时候,建筑系大四的吴佳佑给出了非常明快的肯定答案。吴佳佑正在申请英国伦敦皇家艺术学院的研究生,而他提交的申请作品之一即是一个由AI辅助创作的交互式网站,访问的人可以在图像搭建而成的互动页面中探索由他设计的故事,而组成网站的所有图像都由 Disco diffusion 和 MidJourney 这两个2022年大火的AIGC人工智能生成工具制作。 ![]() “AI生成图像在整体光影、结构以及色彩上的表现在我看来无可挑剔,但很多细节经不起推敲。”对拥有绘画功底,又经常使用AI工具的吴佳佑来说(他的交互式网站制作花费了四个月的时间,期间用AI生成了数千张图),目前AI生成图片迥异于人类的风格是显而易见的。 “细节上经常出现色块堆积,过度不自然和线条粗细变化不均匀这样的问题。”吴佳佑拿着我给的几张在推特上颇受好评的AI生成图像逐字句的点评起来,虽然只有大四,但他的口吻很自信。 对一个美术门外汉来说,这样的细节(尤其你很多时候需要放大作品观察)可能并不重要,但对专业人士来说,差别是显著的。“我给同学说了窍门后,大家不管有没有美术功底,基本上都能看出来。AI生成的图像看不出绘制的前后顺序,因为它背后没有人类绘画的基本逻辑支撑。”吴佳佑说。 问题的根源可能来自算法本身。目前的主流AIGC工具都采用了diffusion model 扩散模型,它的训练基于有文字描述的图片数据,通过对图片反复降噪,AI学习如何生成符合文字描述的图片。由于文字描述往往是整个图片的内容,因此AI深度学习的结果会对整体图片结构和光影的把握比较良好,而相对的在细节上就会失准,因为这些细节往往缺乏文字描述,又相当复杂多变。 这可能是在日漫界最近热炒的AI三大画图难题的来历。所谓三大难题,指的是目前的AI模型不能完成的三种主题创作:萨菲罗斯游泳、樋口円香吃拉面和哭泣的美少女吃蛋糕。AI模型在输入相关指令后往往会生成让人啼笑皆非的图片。 其实AI 不能完成的创作远不止这三种,比如如果你让AI生成游泳的三文鱼,那它大概率给你的图片将会是三文鱼片而不是活蹦乱跳的鱼。 AIGC这些人类看来非常匪夷所思的错误同样要归因于算法,一旦给出的指令过于偏狭,比如日漫中较少表现的水中游泳动作,或者其画面内容存在较为复杂多变的物理交互逻辑,比如“吃拉面”图像意味着同时处理人物、手指、面条和筷子这几个在AI看来都属于线条的内容时,AI大概率会存在翻车的现象,因为训练算法所用的样本集可能较少涵盖相关内容,而扩散模型对复杂细节线条交互变化的理解还相当初级。 但细节往往是决定画家艺术风格和水平的决定性因素之一。插画师元元是少见的迄今仍然坚持纯手绘作图的职业画师,研究生毕业于清华美院的元元讲述了科班美术生的结构、线条色彩和细节是如何被训练的——因循着与AI生成完全不同的逻辑。 “老师会让你以操场为主题画十幅同样的画,一开始你会想要把每一条跑道线,按照透视、光影结构完整的画出来,但到某一个时刻,你会想要去若隐若现地处理某些跑道线,有些留白,有些加重,有些干脆去掉。”元元说,“很多时候画家追寻的是这种主观感受,作品生动不是说要画的和真实世界一模一样。” 绘画的过程不仅考验画家个人的技巧(这部分AI很好达到),画家作为个人,他的感受,心境乃至成长历程、教育背景等都发挥了影响,这些数据量之庞大都是AI所无法计算的。更何况,对元元来说,真正的创作过程在于打破某些规则和逻辑,“国画中很多时候松弛的闲闲一笔就是远山,层云。此处留白,彼处着墨,很多时候画家自己下笔之前都不知道会发生什么,AI如何能知道?又如何计算出来?” 剥离所谓“低效率工作”意味着什么? AI可以模仿的东西 就像对人工智能伦理的讨论一样,科技界对AIGC内容对艺术性的冲击的讨论也经常是模棱两可的。技术至上主义者(硅谷的一大部分人)几乎回避了有关艺术性的讨论,对他们来说不断而持续的精进深度学习算法才是重要的事情。随着数据集和算法的优化,艺术性似乎同样能被01的字符所表达。 某种意义上他们成功了,甚至连谷歌最新推出的基于扩散算法的 imagen video 模型在生成视频方面都能够模仿艺术家风格(比如一只以梵高风格绘就的猫咪在吃东西),而使用AI 辅助创作在许多游戏美术师的工作中已经是通行惯例。在多家大厂有过游戏制作经验的阿丁在谈到AIGC时频繁提到一个词——“喂图”,意思是在游戏人物形象设计的最初——尤其针对一闪而过的NPC人物,美术设计会给AIGC工具输入很多参考图学习,进而快速生成符合游戏要求的结果。 “虽然还要经过后期的调整,但AI现在确实已经取代人力开始承担这部分的工作量了。”阿丁说,他们目前使用较多的工具是较为侧重二次元风格训练的novel AI ,它基于目前最火的 stable diffusion 模型,数据集由500多万张带有文本标记的图片组成。 然而通过“喂图”训练的AIGC模型充满了争议。10月7日,推特用户@BG_5you 基于刚过世的韩国著名漫画家金政基作品使用 Stable Diffusion训练出了金政基风格的绘画模型,此举引来的网友的如潮恶评,而紧接着10月底,工程师Ogbogu Kalu 因为把迪士尼签约画师Hollie Mengert的作品未经同意后抓取训练出可以批量生成 Mengert画风的模型再度冲上热搜。 (编辑:威海站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |
站长推荐