开发者 AI 转型指南
深度学习试图模拟新皮质神经元层的活动。人工神经网络(ANNs)——一种已经这样做的算法。人工神经网络由相互作用的人工神经元组成。它们是分层排列的——每一层都对某些符号做出反应,例如,识别图像时图形的弯曲和边界。学习被称为深度,因为有大量的层次。
认知计算 人工智能使用认知计算来模拟通常由人类执行的过程,解释图像和语言,然后可以根据反应顺序说话和行动。人工智能和机器学习中有很多方法是从自然界的生物得到的灵感。而且,虽然早期的人工智能专注于制造模拟人脑的机器的宏伟目标,但认知计算正朝着这个目标努力。 认知计算是一种建立在神经网络和深度学习的基础上,应用认知科学的知识来构建模拟人类思维过程的系统。然而,认知计算并没有专注于单一的技术,而是涵盖了几个学科,包括机器学习、自然语言处理、视觉和人机交互。
计算机视觉 人工智能是基于图像识别以及对图像或视频中发生的事情的深入研究。当机器能够处理、分析和理解图像时,它们可以单独解释图像,并就输入的处理和使用提供自己的决策。
人工智能的话题非常深刻,到目前为止我们只触及了表面。现在是走向实践的时候了。 Part III. 练习技巧 好吧,如果你准备开始长征,那么我祝贺你!现在你已经具备了一定的知识基础。对于我个人来说,这个阶段最有效的学习方案是两种方式:参加 Kaggle 竞赛,选择要处理的数据集并实践这个过程。 参加 Kaggle 比赛 Kaggle 经常举办数据分析竞赛。我建议先参加没有奖品的比赛,因为它们是最容易的,对初学者更友好。随着时间的推移,你可以转向更复杂的任务。如果这种练习方法适合你,阅读关于如何参加 Kaggle 比赛的指南——The Beginner's Guide to Kaggle。 数据集实践:
适度的休息和一些自驱力 能已经猜到了,你有很多东西要学。但是如果你有你的目标,你真的对所有这些东西感兴趣,你会很高兴地走上这条艰难的学习道路。 现在,让我们记住学习人工智能需要注意的所有要点:
最后,多一点动力,因为动力永远不嫌多,对吧? 每个人在拳击场上都有恐惧感。你很害怕。你的对手也很害怕。但是,真正的区别是有的人会向前走,有的人则会后退一步。 当然,你的任务是选择第一个选项——向前走吧。为此,战胜你的恐惧,投入到对你有价值的事情上去。 【编辑推荐】
点赞 0 (编辑:威海站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |