企业是否需要高性能计算?
尽管云计算高性能计算(HPC)服务具有某些优势,但对于关注安全性和隐私的企业而言,它并不总是很好或很合乎逻辑的选择。Turek指出:“数据存放位置非常敏感。特别是当受到欧洲的GDPR法规限制时。”通用数据保护条例(GDPR)是欧盟发布的隐私法规。 为了解决隐私问题和对强大计算能力的需求,迈阿密大学最近选择投资于基于本地的超级计算机的高性能计算(HPC)系统。最关键的是,该大学认为,拥有大量多维数据集的研究项目可以在专门设计的高性能超级计算机上运行得更快。 去年8月,迈阿密大学推出了基于Power Systems AC922服务器的新型IBM Triton超级计算机。迈阿密大学计算科学中心主任、数据和研究计算副教务长Nicholas Tsinoremas指出,已有2000多名学生和教员使用该系统从事气候预测、基因组学、生物信息学、计算机视觉和人工智能等项目。 其部署虽然成功,但在初期却遇到了一些障碍,几乎所有采用高性能计算(HPC)的用户都能遇到这种情况,无论其规模、领域或计算需求如何。Tsinoremas说,“迁移问题始终是一个问题,还必须解决用户培训和再培训问题。新系统与传统存储系统的集成是另一个挑战。” 所有这些问题都凸显了一个事实,即高性能计算(HPC)系统是基于内部部署还是基于云计算,其采用需要大量的计划和准备。Tsinoremas警告说,“企业具有专业知识是必要的,并且必须有一个计划。了解工作负载的性质和要求也很重要。换句话说,采用者需要了解他们试图解决的问题以及希望高性能计算(HPC)如何帮助解决这些问题。” 高性能计算(HPC)工作负载入门另一个要点是选择正确的资源管理工具,该工具使组织能够访问和优化高性能计算(HPC)环境。Altair公司高级产品管理主管Jérémie Bourdoncle说,“无论是购买传统的高性能计算(HPC)硬件环境,还是利用云中的高性能计算(HPC)或同时使用这两者,选择最适合组织的工作类型和吞吐量要求的高性能计算(HPC)工作负载管理器都是至关重要的。”Altair公司是一家模拟软件和其他与HPC相关的供应商工具和服务,其工作负载管理器具有自动化作业调度以及管理、监视和报告功能。 Kissell建议采用一种注重知识、简单、选择和谨慎的采纳策略。他说,“这可能是一段漫长的旅程,因此需要规划行程,但要给自己机会进行调整。组织需要选择一个简单但具有代表性的测试用例,并且可以清楚地识别从高性能计算(HPC)仿真或分析中获得的知识和见解。然后选择针对自己的问题类别设计的软件包的简短列表,并进行更多的尝试。” 【编辑推荐】
点赞 0 (编辑:威海站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |