C++ 数据结构之对称矩阵及稀疏矩阵的压缩存储
发布时间:2020-12-25 18:47:55 所属栏目:经验 来源:网络整理
导读:对称矩阵及稀疏矩阵的压缩存储 1.稀疏矩阵 对于那些零元素数目远远多于非零元素数目,并且非零元素的分布没有规律的矩阵称为稀疏矩阵(sparse)。 人们无法给出稀疏矩阵的确切定义,一般都只是凭个人的直觉来理解这个概念,即矩阵中非零元素的个数远远小于矩
对称矩阵及稀疏矩阵的压缩存储 1.稀疏矩阵 对于那些零元素数目远远多于非零元素数目,并且非零元素的分布没有规律的矩阵称为稀疏矩阵(sparse)。 人们无法给出稀疏矩阵的确切定义,一般都只是凭个人的直觉来理解这个概念,即矩阵中非零元素的个数远远小于矩阵元素的总数,并且非零元素没有分布规律。 实现代码: //稀疏矩阵及其压缩存储 #pragma once #include <vector> #include <iostream> using namespace std; template<class T> struct Triple { size_t _r; size_t _c; T _value; Triple(size_t row = 0,size_t col = 0,const T& value = T()) :_r(row),_c(col),_value(value) {} }; template <class T> class SparseMatrix { public: SparseMatrix() :_row(0),_col(0),_illegal(T()) {} SparseMatrix(T* arr,size_t row,size_t col,const T& illegal) :_row(row),_col(col),_illegal(illegal) { for(size_t i = 0; i<row; ++i) { for(size_t j = 0; j<col; ++j) { if(arr[i*col+j] != illegal) { Triple<T> t(i,j,arr[i*col+j]); _matrix.push_back(t); } } } } void Display() { vector<Triple<T> >::iterator iter; iter = _matrix.begin(); for(size_t i = 0; i<_row; ++i) { for(size_t j = 0; j<_col; ++j) { if(iter!=_matrix.end() &&iter->_r == i &&iter->_c == j) { cout << iter->_value <<" "; ++iter; } else { cout << _illegal <<" "; } } cout << endl; } cout << endl; } //普通转置(行优先存储) //列变行,从0列开始,将列数据一个一个放进转置矩阵 SparseMatrix<T> Transpose() { SparseMatrix<T> tm; tm._row = _col; tm._col = _row; tm._illegal = _illegal; tm._matrix.reserve(_matrix.size()); for(size_t i = 0; i<_col; ++i) { size_t index = 0; while(index < _matrix.size()) { if(_matrix[index]._c == i) { Triple<T> t(_matrix[index]._c,_matrix[index]._r,_matrix[index]._value); tm._matrix.push_back(t); } ++index; } } return tm; } SparseMatrix<T> FastTranspose() { SparseMatrix<T> tm; tm._row = _col; tm._col = _row; tm._illegal = _illegal; tm._matrix.resize(_matrix.size()); int* count = new int[_col];//记录每行的元素个数 memset(count,sizeof(int)*_col); int* start = new int[_col];//转置矩阵中元素的位置 start[0] = 0; size_t index = 0; while(index < _matrix.size()) { count[_matrix[index]._c]++; ++index; } for(size_t i=1; i<_col; ++i) { start[i] = start[i-1] + count[i-1]; } index = 0; while(index < _matrix.size()) { Triple<T> t(_matrix[index]._c,_matrix[index]._value); tm._matrix[start[_matrix[index]._c]++] = t; //核心代码 ++index; } delete[] count; delete[] start; return tm; } protected: vector<Triple<T> > _matrix; size_t _row; size_t _col; T _illegal; }; 2.对称矩阵 实现代码: //对称矩阵及其压缩存储 #pragma once #include <iostream> using namespace std; template <class T> class SymmetricMatrix { public: SymmetricMatrix(T* arr,size_t n) :_n(n),_matrix(new T[n*(n+1)/2]) { size_t index = 0; for(size_t i = 0; i<n; ++i) { for(size_t j=0; j<n;++j) { if(i >= j) { _matrix[index] = arr[i*n+j]; ++index; } else { continue; } } } } void Display() { for(size_t i =0; i < _n; ++i) { for(size_t j = 0; j < _n; ++j) { /* if(i<j) { swap(i,j); cout<<_matrix[i*(i+1)/2+j]<<" "; swap(i,j); } else cout<<_matrix[i*(i+1)/2+j]<<" "; */ cout << Access(i,j) << " "; } cout << endl; } cout << endl; } T& Access(size_t row,size_t col) { if(row<col) { swap(row,col); } return _matrix[row*(row+1)/2+col]; } ~SymmetricMatrix() { if(_matrix != NULL) { delete[] _matrix; _matrix = NULL; } } protected: T* _matrix; size_t _n; //对称矩阵的行列大小 }; 以上就是C++ 数据结构实现稀疏矩阵与对称矩阵,如有疑问请留言或者到本站社区交流讨论,感谢阅读,希望能帮助到大家,谢谢大家对本站的支持! (编辑:威海站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |