linux 线程 Java离Linux内核有多远?
在往期的文章中,给大家分享了内核中的重要功能 —— 容器底层 cgroup 的相关知识linux 线程,不少读者表示内核实在太高深,代码也较难理解。本期内容我们将站在非内核开发者的角度,给大家介绍应用和系统工程师如何梳理 Linux 内核代码。 Java 离内核有多远? 测试环境版本信息: 玩内核的人怎么也懂 Java?这主要得益于我学校的 Java 课程和毕业那会在华为做 Android 手机的经历,几个模块从 APP/Framework/Service/HAL/Driver 扫过一遍,自然对 Java 有所了解。 每次提起 Java,我都会想到一段有趣的经历。刚毕业到部门报到第一个星期,部门领导(在华为算是 Manager)安排我们熟悉 Android。我花了几天写了个 Android 游戏,有些类似连连看那种。开周会的时候,领导看到我的演示后,一脸不悦,质疑我的直接领导(在华为叫 PL,Project Leader)没有给我们讲明白部门的方向。 emm,我当时确实没明白所谓的熟悉 Android 是该干啥,后来 PL 说,是要熟悉 xxx 模块,APP 只是其中一部分。话说如果当时得到的是肯定,也许我现在就是一枚 Java 工程师了(哈哈手动狗头)。 从 launcher 说起 世界上最远的距离,是咱俩坐隔壁,我在看底层协议,而你在研究 spring……如果想拉近咱俩的距离,先下载 openjdk 源码,然后下载 glibc,再下载内核源码。 Java 程序到 JVM,这个大家肯定比我熟悉,就不班门弄斧了。 我们就从 JVM 的入口为例,分析 JVM 到内核的流程,入口就是 main 函数了(java.base/share/native/launcher/main.c):
JLI_Launch 做了三件我们关心的事。 首先,调用 CreateExecutionEnvironment 查找设置环境变量,比如 JVM 的路径(下面的变量 jvmpath),以我的平台为例,就是 /usr/lib/jvm/java-14-openjdk-amd64/lib/server/libjvm.so,window 平台可能就是 libjvm.dll。 其次,调用 LoadJavaVM 加载 JVM,就是 libjvm.so 文件,然后找到创建 JVM 的函数赋值给 InvocationFunctions 的对应字段:
dlopen 和 dlsym 涉及动态链接,简单理解就是 libjvm.so 包含 JNI_CreateJavaVM、JNI_GetDefaultJavaVMInitArgs 和 JNI_GetCreatedJavaVMs 的定义,动态链接完成后,ifn->CreateJavaVM、ifn->GetDefaultJavaVMInitArgs 和 ifn->GetCreatedJavaVMs 就是这些函数的地址。 不妨确认下 libjvm.so 有这三个函数。 objdump -D /usr/lib/jvm/java-14-openjdk-amd64/lib/server/libjvm.so | grep -E
openjdk 源码里有这些实现的(hotspot/share/prims/下),有兴趣的同学可以继续钻研。 最后,调用 JVMInit 初始化 JVM,load Java 程序。 JVMInit 调用 ContinueInNewThread,后者调用 CallJavaMainInNewThread。插一句,我是真的不喜欢按照函数调用的方式讲述问题,a 调用 b,b 又调用 c,简直是在浪费篇幅,但是有些地方跨度太大又怕引起误会(尤其对初学者而言)。相信我,注水,是真没有,我不需要经验+3 哈哈。 CallJavaMainInNewThread 的主要逻辑如下:
看到 pthread_create 了吧,破案了,Java 的线程就是通过 pthread 实现的。此处就可以进入内核了,但是我们还是先继续看看 JVM。ThreadJavaMain 直接调用了 JavaMain,所以这里的逻辑就是,如果创建线程成功,就由新线程执行 JavaMain,否则就知道在当前进程执行JavaMain。 JavaMain 是我们关注的重点,核心逻辑如下:
第 1 步,调用 InitializeJVM 初始化 JVM。InitializeJVM 会调用 ifn->CreateJavaVM,也就是libjvm.so 中的 JNI_CreateJavaVM。 第 2 步,LoadMainClass,最终调用的是 JVM_FindClassFromBootLoader,也是通过动态链接找到函数(定义在 hotspot/share/prims/ 下),然后调用它。 第 3 和第 4 步,Java 的同学应该知道,这就是调用 main 函数。 有点跑题了……我们继续以 pthread_create 为例看看内核吧。 其实,pthread_create 离内核还有一小段距离,就是 glibc(nptl/pthread_create.c)。创建线程最终是通过 clone 系统调用实现的,我们不关心 glibc 的细节(否则又跑偏了),就看看它跟直接 clone 的不同。 以下关于线程的讨论从书里摘抄过来。 const int clone_flags = (CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SYSVSEM
各个标志的说明如下表(这句话不是摘抄的。。。)。 与当前进程共享 VM、共享文件系统信息、共享打开的文件……看到这些我们就懂了,所谓的线程是这么回事。 Linux 实际上并没有从本质上将进程和线程分开,线程又被称为轻量级进程(Low Weight Process, LWP),区别就在于线程与创建它的进程(线程)共享内存、文件等资源。 完整的段落如下(双引号扩起来的几个段落),有兴趣的同学可以详细阅读: “fork 传递至 _do_fork 的 clone_flags 参数是固定的,所以它只能用来创建进程,内核提供了另一个系统调用 clone,clone 最终也调用 _do_fork 实现,与 fork 不同的是用户可以根据需要确定 clone_flags,我们可以使用它创建线程,如下(不同平台下 clone 的参数可能不同):
Linux 将线程当作轻量级进程,但线程的特性并不是由 Linux 随意决定的,应该尽量与其他操作系统兼容,为此它遵循 POSIX 标准对线程的要求。所以,要创建线程,传递给 clone 系统调用的参数也应该是基本固定的。 创建线程的参数比较复杂,庆幸的是 pthread(POSIX thread)为我们提供了函数,调用pthread_create 即可,函数原型(用户空间)如下。 int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
第一个参数 thread 是一个输出参数,线程创建成功后,线程的 id 存入其中,第二个参数用来定制新线程的属性。新线程创建成功会执行 start_routine 指向的函数,传递至该函数的参数就是arg。 pthread_create 究竟如何调用 clone 的呢,大致如下: //来源: glibc
clone_flags 置位的标志较多,前几个标志表示线程与当前进程(有可能也是线程)共享资源,CLONE_THREAD 意味着新线程和当前进程并不是父子关系。 clone 系统调用最终也通过 _do_fork 实现,所以它与创建进程的 fork 的区别仅限于因参数不同而导致的差异,有以下两个疑问需要解释。 首先,vfork 置位了 CLONE_VM 标志,导致新进程对局部变量的修改会影响当前进程。那么同样置位了 CLONE_VM 的 clone,也存在这个隐患吗?答案是没有,因为新线程指定了自己的用户栈,由 stackaddr 指定。copy_thread 函数的 sp 参数就是 stackaddr,childregs->sp = sp 修改了新线程的 pt_regs,所以新线程在用户空间执行的时候,使用的栈与当前进程的不同,不会造成干扰。那为什么 vfork 不这么做,请参考 vfork 的设计意图。 其次,fork 返回了两次,clone 也是一样,但它们都是返回到系统调用后开始执行,pthread_create 如何让新线程执行 start_routine 的?start_routine 是由 start_thread 函数间接执行的,所以我们只需要清楚 start_thread 是如何被调用的。start_thread 并没有传递给 clone 系统调用,所以它的调用与内核无关,答案就在 __clone 函数中。 为了彻底明白新进程是如何使用它的用户栈和 start_thread 的调用过程,有必要分析 __clone 函数了,即使它是平台相关的,而且还是由汇编语言写的。 /*i386*/
以 __clone (&start_thread, stackaddr, clone_flags, pd, &pd->tid, tp, &pd->tid) 为例, FUNC(%esp) 对应 &start_thread, STACK(%esp) 对应 stackaddr, ARG(%esp) 对应 pd(新进程传递给 start_thread 的参数)。 如此看来,Java→JVM→glibc→内核,好像也没有多远。 作者介绍 姜亚华,《精通 Linux 内核——智能设备开发核心技术》的作者,一直从事与 Linux 内核和 Linux 编程相关的工作,研究内核代码十多年,对多数模块的细节如数家珍。曾负责华为手机 Touch、Sensor 的驱动和软件优化(包括 Mate、荣耀等系列),以及 Intel 安卓平台 Camera 和 Sensor 的驱动开发(包括 Baytrail、Cherrytrail、Cherrytrail CR、Sofia 等)。现负责 DMA、Interrupt、Semaphore 等模块的优化与验证(包括 Vega、Navi 系列和多款 APU 产品)。 *版权声明:转载文章和图片均来自公开网络,版权归作者本人所有,推送文章除非无法确认,我们都会注明作者和来源。如果出处有误或侵犯到原作者权益,请与我们联系删除或授权事宜。 (编辑:威海站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |